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Abstract

We present here a domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations
discretized by a discontinuous Galerkin method. In order to allow the treatment of irregularly shaped geometries, the dis-
continuous Galerkin method is formulated on unstructured tetrahedral meshes. The domain decomposition strategy takes
the form of a Schwarz-type algorithm where a continuity condition on the incoming characteristic variables is imposed at
the interfaces between neighboring subdomains. A multifrontal sparse direct solver is used at the subdomain level. The
resulting domain decomposition strategy can be viewed as a hybrid iterative/direct solution method for the large, sparse
and complex coefficients algebraic system resulting from the discretization of the time-harmonic Maxwell equations by a
discontinuous Galerkin method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This work aims at developing a high-performance numerical methodology for the computer simulation of
time-harmonic electromagnetic wave propagation problems in irregularly shaped domains and heterogeneous
media. In this context, we are naturally led to consider volume discretization methods (i.e. finite difference,
finite volume or finite element methods) as opposed to surface discretization methods (i.e. boundary element
method). Most of the related existing works deal with the second-order form of the time-harmonic Maxwell
equations discretized by a conforming finite element method [36]. More recently, discontinuous Galerkin
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methods [29] have also been considered for this purpose. Here, we concentrate on the first-order form of the
time-harmonic Maxwell equations discretized by discontinuous Galerkin methods on unstructured tetrahedral
meshes. While it keeps almost all the advantages of the finite element method (large spectrum of applications,
complex geometries, etc.), the discontinuous Galerkin method has other nice properties which explain the
renewed interest it gains in various domains in scientific computing (as witnessed by books or special issues
of journals dedicated to this method [9,10,12]): easy extension to higher order interpolation (one may increase
the degree of the polynomials in the whole mesh as easily as for spectral methods and moreover this can be
done very locally), no global mass matrix to invert (when solving time-domain systems of partial differential
equations using an explicit time scheme), easy handling of complex meshes (the grid may be a classical con-
forming finite element mesh, a non-conforming one or even a hybrid mesh made of various types of element),
natural treatment of discontinuous solutions and coefficient heterogeneities, nice parallelization properties (the
compact nature of a discontinuous Galerkin scheme is in favor of high computation to communication ratio
especially for high-order interpolation methods). Not all of these features are exploited in the present study:
we limit ourselves to the lowest order schemes (constant and linear interpolation) and we assume conforming
meshes. Higher order nodal interpolation is considered in [15] in the context of the two-dimensional time-har-
monic Maxwell equations while non-conforming triangular meshes in conjunction with high-order discontin-
uous Galerkin time-domain methods are studied in [20].

Theoretical results concerning discontinuous Galerkin methods applied to the time-harmonic Maxwell
equations have been obtained by several authors. Most of these works use a mixed formulation [37,30] but
discontinuous Galerkin methods on the non-mixed formulation have also been proved to converge (interior
penalty techniques [29,7] and local discontinuous Galerkin methods [7]). However, to our knowledge, a direct
convergence analysis of discontinuous Galerkin methods applied to the first-order time-harmonic Maxwell
system has not been conducted so far. Our contribution in [15] is a numerical evaluation of the convergence
of discontinuous Galerkin methods based on centered and upwind fluxes and nodal polynomial interpolation
applied to the first-order time-harmonic Maxwell system in the two-dimensional case. These methods have
previously been shown to converge in the time-domain case [28,21].

In this paper, we are concerned with the application of such discontinuous Galerkin methods to the discret-
ization of the three-dimensional time-harmonic Maxwell equations taken in the form of a first-order system of
partial differential equations. Our efforts are towards the design of a parallel solution strategy for the resulting
large, sparse and complex coefficients algebraic systems. Indeed, as far as non-trivial propagation problems
are considered, the associated matrix operators are in most cases solved with difficulty by classical iterative
methods. The preconditioning issues for highly indefinite and non-symmetric matrices is for instance discussed
by Benzi et al. in [3] in the context of incomplete factorization and sparse approximate inverse preconditioners.
If a robust and efficient solver is sought then a sparse direct method is the most practical choice. Over the last
decade, significant progress has been made in developing parallel direct methods for solving sparse linear sys-
tems, due in particular to advances made in both the combinatorial analysis of Gaussian elimination process,
and on the design of parallel block solvers optimized for high-performance computers [2,27]. However, direct
methods will still fail to solve very large three-dimensional problems, due to the potentially huge memory
requirements for these cases. Iterative methods can be used to overcome this memory problem. However, a
better solution can be found, combining advantages of both iterative and direct methods. For example, a pop-
ular approach is domain decomposition where one splits the computational domain into smaller subdomains
and then uses a direct solver inside each subdomain coupled with an iterative solver on the interfaces (artificial
boundaries) between subdomains. This approach is adopted in this work.

Domain decomposition methods are flexible and powerful techniques for the parallel numerical solution of
systems of partial differential equations. Concerning their application to time-harmonic wave propagation
problems, the simplest algorithm was proposed by Després [13] for solving the Helmholtz equation and then
extended and generalized for the time-harmonic Maxwell equations in [14,11,1]. The analysis of a larger class
of Schwarz algorithms has been performed recently in [16] where optimized transmission conditions are used.
The latter extends the idea of the most general, optimized interface conditions designed for the Helmholtz
problem in [23]. Our ultimate objective is the design and application of optimized Schwarz algorithms in con-
junction with discontinuous Galerkin methods. The first step in this direction is understanding and analyzing
classical overlapping and non-overlapping Schwarz algorithms in the discrete framework of these methods. To
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our knowledge, except in Helluy [25], where such an algorithm is applied to a discretization of the first-order
time-harmonic Maxwell equations by an upwind finite volume method, no other attempts for higher order
discontinuous Galerkin methods or different kind of fluxes can be found in the literature.

A classical domain decomposition strategy is adopted in this study which takes the form of a Schwarz algo-
rithm where Després type conditions [14] are imposed at the interfaces between neighboring subdomains.
These conditions actually translate into a continuity condition for the incoming characteristic variables in
the case of the first-order Maxwell system. A similar approach (using Robin transmission conditions) but
applied to a second-order form of the Maxwell system, and in conjuction with a non-conforming finite element
discretization, is presented in [34,42]. The main reason which led us to adopt the first-order formulation of the
Maxwell equations, as pointed out in [16], stems from the fact that one can use the properties of the underlying
time-domain problem, which is hyperbolic, to derive all possible classes of interface conditions. The use of
higher order (i.e. optimized) transmission conditions is the natural prolongation of the present work and this
has already been done in the two-dimensional case in [16] using a finite volume method formulated on a qua-
drangular grid. A second motivation lies in the added flexibility with regards to the choice of the numerical
flux (i.e. centered or upwind scheme) given that we regard a discontinuous Galerkin formulation as a natural
route to the design of a high order, compact stencil finite volume method. Finally, from the practical point of
view and for what concerns the discontinuous Galerkin formulation on tetrahedral meshes, the software devel-
opments realized in this study build upon our former works on the numerical solution of the time-domain
Maxwell equations [21] using the first-order system. However, beside the above mentioned motivations and
advantages, it is clear that the use of the first-order form of the Maxwell equations leads to an algebraic system
of equations with twice the number of unknowns compared to the discrete system associated with a second-
order wave form. From the computational point of view, this can put a severe constraint on the required
processing and memory capacities, especially in the context of a discontinuous Galerkin formulation, which
further emphasize that parallel processing is a mandatory path. Nevertheless, it is also worthwhile to note that
the matrix operator of the discrete system associated with a second-order wave form has a larger bandwidth
and in general a worse conditioning than that resulting from the discretization of the first-order system.

A multifrontal sparse direct solver is used at the subdomain level. The resulting domain decomposition
strategy can be viewed as a hybrid iterative/direct solution method for the large, sparse and complex coeffi-
cients algebraic system resulting from the discretization of the time-harmonic Maxwell equations by a discon-
tinuous Galerkin method.

The rest of this paper is organized as follows. In Section 2, we formulate the continuous boundary value
problem to be solved. Then, in Section 3, the adopted Schwarz-type domain decomposition method is intro-
duced. Section 4 is devoted to the discretization of the global and domain decomposed boundary value prob-
lems. A well-posedness result for a perturbed discrete problem which generalizes the idea of [6] to higher order
discontinuous Galerkin methods is established. Finally, in Section 5, numerical strategies for solving local
problems as well as parallel computing aspects are discussed and experimental results are presented. Beside
classical scattering test problems, we also consider a more challenging situation which consists in the propa-
gation of a plane wave in a realistic geometric model of human head tissues.
2. Formulation of the continuous problem

The system of non-dimensioned time-harmonic Maxwell’s equations can be written under the following
form:
ixerE � curlH ¼ �J ;

ixlrH þ curlE ¼ 0;

�
ð2:1Þ
where E and H are the unknown electric and magnetic fields and J is a known current source. The parameters
er and lr are respectively the complex-valued relative dielectric permittivity (integrating the electric conductiv-
ity) and the relative magnetic permeability; we consider here the case of linear isotropic media. The angular
frequency of the problem is given by x. Eq. (2.1) is solved in a bounded domain X. On the boundary
oX = Ca [ Cm, the following boundary conditions are imposed:
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�a perfect electric conductor ðPECÞ condition on Cm : n� E ¼ 0;

�a Silver-M€uller ðfirst-order absorbing conditionÞ condition

on Ca : n� E þ n� ðn�HÞ ¼ n� Einc þ n� ðn�H incÞ:
ð2:2Þ
The vectors Einc and Hinc represent the components of an incident electromagnetic wave and n denotes the
unitary outward normal. Eqs. (2.1) and (2.2) can be further rewritten, assuming J equals to 0, under the fol-
lowing form:
ixG0W þ GxoxW þ GyoyW þ GzozW ¼ 0 in X;

ðMCm � GnÞW ¼ 0 on Cm;

ðMCa � GnÞðW �W incÞ ¼ 0 on Ca:

8><>: ð2:3Þ
where W ¼ E
H

� �
is the new unknown vector and G0 ¼

erI3 03�3

03�3 lrI3

� �
. The terms I3 and 03·3 denote respec-

tively the identity matrix and a null matrix, of dimensions 3 · 3. The real part of G0 is symmetric positive
definite and its imaginary part, which appears for instance in the case of conductive materials, is symmetric
negative. Denoting by (ex,ey,ez) the canonical basis of R3, the matrices Gl with l 2 {x,y,z} are given by:
Gl ¼
03�3 N el

N t
el 03�3

� �
where for a vector v ¼

vx

vy

vz

0B@
1CA; N v ¼

0 vz �vy

�vz 0 vx

vy �vx 0

0B@
1CA:
In the following we denote by Gn the sum Gxnx + Gy ny + Gznz and by Gþn and G�n its positive and negative
parts.1 We also define j Gn j¼ Gþn � G�n . In order to take into account the boundary conditions, the matrices
MCm and MCa are given by:
MCm ¼
03�3 N n

�Nt
n 03�3

� �
and MCa ¼ jGnj:
3. A classical domain decomposition method

We consider now the problem (2.3). In order to ease the presentation we decompose the domain X into two
overlapping or non-overlapping subdomains X1 and X2 but the extension of the formulation of the method to
any number of subdomains is straightforward. We define C12 = oX1 \ X2 and C21 = oX2 \ X1. In the following
we denote by nij the outward normal vector to the interface Cij with i, j in {1, 2}. We solve system (2.3) in both
subdomains and we enforce on the subdomain interfaces the continuity of the incoming characteristic vari-
ables which provides a so-called classical Schwarz algorithm (see [16] for details). The classical Schwarz algo-
rithm allows to compute the (n + 1)th iterate of the solution from the nth iterate, starting from an arbitrary
initial guess, by solving local problems and then exchanging information between artificial boundaries, called
interfaces. This algorithm is given by:
ixW 1;nþ1 þ
P

l2fx;y;zg
GlolW

1;nþ1 ¼ 0 in X1;

G�n12
W1;nþ1 ¼ G�n12

W 2;n on C12;

þBoundary conditions on oX1 \ oX;

8>><>>:
ixW 2;nþ1 þ

P
l2fx;y;zg

GlolW
2;nþ1 ¼ 0 in X2;

G�n21
W2;nþ1 ¼ G�n21

W 1;n on C21;

þBoundary conditions on oX2 \ oX;

8>><>>:
ð3:1Þ
where subscripts denote components, and superscripts denote the subdomain number and the iteration count.
KT�1 is the eigenfactorization of Gn then G�n ¼ TK�T�1 where K+ (resp. K�) only gathers the positive (resp. negative) eigenvalues.
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This algorithm has been analyzed in [16] and its convergence rate has been computed in the case of an infi-
nite domain X ¼ R3.

4. Discretization

The subproblems of the Schwarz algorithm (3.1) are discretized using a discontinuous Galerkin formula-
tion. In this section, we first introduce this discretization method in the one-domain case. Then, we state a
well-posedness result for a perturbed discrete problem. Finally, we establish the discretization of the interface
condition of algorithm (3.1) with respect to the adopted discontinuous Galerkin formulation.

Let Xh denote a discretization of the domain X into a union of conforming tetrahedral elements

Xh ¼
S

K2T h
K. We look for the approximate solutionWh ¼

Eh

Hh

� �
of (2.3) in Vh · Vh where the functional

space Vh is defined by:
V h ¼ fU 2 ½L2ðXÞ�3=8K 2 T h;U jK 2 PpðKÞg: ð4:1Þ
where PpðKÞ denotes a space of vectors with polynomial components of degree at most p over the element K.

4.1. Discretization of the one-domain problem

Following the presentation of Ern and Guermond [18,19], the discontinuous Galerkin discretization of sys-
tem (2.3) yields the formulation of the discrete problem:
Find Wh in V h � V h such that :R
Xh
ðixG0WhÞtV dvþ

P
K2T h

R
K

P
l2fx;y;zg

GlolðWhÞ
 !t

V dv

þ
P

F2Cm[Ca

R
F

1
2
ðMF ;K � IFKGnF ÞWh

� �t
V ds

�
P

F2C0

R
F GnF sW htð ÞtfVgdsþ

P
F2C0

R
F SF sWhtð ÞtsVtds

¼
P

F2Ca

R
F

1
2
ðMF ;K � IFKGnF ÞW inc

� �t
V ds; 8V 2 V h � V h;

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð4:2Þ
where C0, Ca and Cm, respectively denote the set of interior (triangular) faces, the set of faces on Ca and the set
of faces on Cm. The unitary normal associated to the oriented face F is nF and IFK stands for the incidence
matrix between oriented faces and elements whose entries are given by:
IFK ¼
0 if the face F does not belong to element K;

1 if F 2 K and their orientations match;

�1 if F 2 K and their orientations do not match:

8><>:

We also define respectively the jump and the average of a vector V of Vh · Vh on a face F shared by two ele-
ments K and eK :
sVt ¼ IFKV jK þ I
FeK V

jeK and fVg ¼ 1

2
V jK þ V

jeK� �
:

Finally, the matrix SF, which is hermitian positive, allows to penalize the jump of a field or of some compo-
nents of this field on the face F and the matrix MF, K, to be defined later, insures the asymptotic consistency
with the boundary conditions of the continuous problem.

Problem (4.2) is often interpreted in terms of local problems in each element K of T h coupled by the intro-
duction of an element boundary term called numerical flux (see also [18]). In this study, we consider two clas-
sical numerical fluxes, which lead to distinct definitions for matrices SF and MF, K:



V. Dolean et al. / Journal of Computational Physics 227 (2008) 2044–2072 2049
– a centered flux (see [21] for the time-domain equivalent). In this case SF = 0 for all the faces F and, for the
boundary faces, we use:
MF ;K ¼
IFK

03�3 N nF

�N t
nF

03�3

 !
if F 2 Cm;

jGnF j if F 2 Ca:

8><>: ð4:3Þ
– an upwind flux (see [38,18]). In this case:
SF ¼
aE

F N nF N t
nF

03�3

03�3 aH
F N t

nF
N nF

 !
;

MF ;K ¼
gF N nF N t

nF
IFKN nF

�IFKNt
nF

03�3

 !
if 2 Cm;

jGnF j if F 2 Ca

8><>:
ð4:4Þ
with aE
F , aH

F and gF equals to 1/2 for homogeneous media.

Remark 1. The formulation of the discontinuous Galerkin scheme above (in particular, the centered and
upwind fluxes) actually applies to homogeneous materials. For describing the flux in the inhomogeneous case,
let us define:
ZK ¼ 1

Y K ¼
ffiffiffiffiffi
lr

er

r
; ZF ¼ ZK þ ZeK

2
and Y F ¼ Y K þ Y eK

2
; ð4:5Þ
where F ¼ K \ eK . With these definitions, the discontinuous Galerkin scheme in the inhomogeneous case can
be written formally as (4.2) but by modifying SF as:
SF ¼
1

2

1
ZF N nF N t

nF
03�3

03�3
1

Y F N t
nF

N nF

 !
; ð4:6Þ
and by using for the average, a weighted average { Æ }F for each face F:
fVgF ¼
1

2

ZeK
ZF 03�3

03�3
YeK
Y F

0B@
1CAVjK þ

ZK

ZF 03�3

03�3
Y K

Y F

 !
V
jeK

0B@
1CA: ð4:7Þ
In order to simplify the presentation in the following sections, we only retain the formulation adapted to
homogeneous materials.

4.2. Comments on the discretization

A few works have considered the discretization of the time-harmonic Maxwell equations by a discontinuous
Galerkin formulation combined to the numerical fluxes (4.3) and (4.4). Concerning the convergence properties
of such discontinuous Galerkin formulations, the state-of-art is the following:

� when the discontinuous Galerkin method is combined to the upwind flux (4.4), convergence results have
been obtained by Helluy and Dayma in [26] for a perturbed problem, i.e. replacing ix by ix + m with m
a strictly positive parameter. Their result states that, if the solution is sufficiently regular and if a polyno-
mial approximation of order p is used in each element K, the L2-norm error of the electromagnetic fields
behaves as hp+1/2 where h is the mesh parameter.
� The discontinuous Galerkin method combined to the centered flux (4.3) has been studied by Fezoui et al. in

[21] for the time-domain Maxwell equations. In this case, the L2-norm error of the electromagnetic fields
behaves as hp. This result should extend to the time-harmonic case however no convergence proofs are
available so far.
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The convergence of the discontinuous Galerkin methods considered here is studied numerically in the
context of the two-dimensional time-harmonic Maxwell equations discretized on triangular meshes in
[15].

Beside, we can study the solvability of the discrete problem in the case of a perturbed problem (we replace
ix by ix + m with m > 0). Nonetheless, the numerical evaluation in Section 5 is performed in the unperturbed
situation (m = 0). We recall here the proof already presented in [15]. In this setting and assuming homogeneous
boundary conditions, the problem at hand can be simply written as:
Find Wh in V h � V h such that :

aðWh;VÞ þ bðWh;VÞ ¼ 0; 8V 2 V h � V h;

�
ð4:8Þ
with, "U,V 2 Vh · Vh:
aðU ;VÞ ¼
Z

Xh

ðixþ mÞG0Uð ÞtV dvþ
X
F2Ca

Z
F

1

2
jGnF jU

� �t

V dsþ
X
F2Cm

Z
F

1

2
MF ;KU

� �t

V ds

þ
X
F2C0

Z
F

SF sUtð ÞtsVtF ds; ð4:9Þ
and
bðU ;VÞ ¼
X
K2T h

Z
K

X
l2fx;y;zg

GlolðUÞ
 !t

V dv�
X

F2Ca[Cm

Z
F

1

2
IFKGnF U

� �t

Vds�
X
F2C0

Z
F

GnF sUtð ÞtfVgds:

ð4:10Þ
Then, we have the following result.

Proposition 1. The solution of problem (4.8) is equal to zero.

Proof. Let RðG0Þ and IðG0Þ, respectively denote the real and imaginary parts of G0. First, considering the fact
that the matrices jGnF j, SF, RðG0Þ and �IðG0Þ are hermitian and denoting by HðMF ;KÞ the hermitian part of

MF, K for F in Cm, which is equal to
gF N nF N t

nF
03�3

03�3 03�3

� �
, one has:
RðaðWh;W hÞÞ ¼
Z

Xh

ððmRðG0Þ � xIðG0ÞÞW hÞtWh dvþ
X
F2C0

Z
F

SF sWhtð ÞtsWhtF ds

þ
X
F2Ca

Z
F

1

2
jGnF jWh

� �t

Wh dsþ
X
F2Cm

Z
F

1

2
HðMF ;KÞW

� �
W : ð4:11Þ
Then, we rewrite using the corresponding Green identity an equivalent expression of the sesquilinear form b:
bðU ;VÞ ¼ �
X
K2T h

Z
K

U t
X

l2fx;y;zg
GlolðVÞ

 !
dv

"
�
X
F2oK

Z
F
ðIFKGnF U jKÞtV jK ds

#

�
X

F2Ca[Cm

Z
F

1

2
IFKGnF U

� �t

V ds�
X
F2C0

Z
F

GnF sUtð ÞtfVgds; 8U ;V 2 V h � V h: ð4:12Þ
By noticing that on a face F 2 C0 separating two elements K and eK :
ðGnF fUgÞ
t
sVtþ ðGnF sUtÞtfVg ¼ ðIFKGnF U jKÞtV jK þ ðI

FeK GnF U
jeK ÞtV jeK ;
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which is in part due to the fact that GnF is hermitian, one deduces:
bðU ;VÞ ¼ �
X
K2T h

Z
K

U t
X

l2fx;y;zg
GlolðVÞ

 !
dvþ

X
F2Ca[Cm

Z
F

1

2
IFKGnF U

� �t

V ds

þ
X
F2C0

Z
F

GnF fUgð ÞtsVtds; 8U ;V 2 V h � V h: ð4:13Þ
Thus, it is now straightforward to see that b is anti-hermitian and consequently:
RðaðW h;WhÞ þ bðWh;WhÞÞ ¼
Z

Xh

ðmRðG0Þ � xIðG0ÞÞW hð ÞtWh dvþ
X
F2C0

Z
F

SF sWhtð ÞtsWhtF ds

þ
X
F2Ca

Z
F

1

2
jGnF jWh

� �t

Wh dsþ
X
F2Cm

Z
F

1

2
HðMF ;KÞW

� �
W ;
From (4.8), RðaðWh;WhÞ þ bðWh;WhÞÞ is also equal to zero. As mRðG0Þ � xIðG0Þ is positive definite and
jGnF j, SF and HðMF ;KÞ are positive, the vector field Wh is zero. h
4.3. Discretization of the domain decomposition algorithm

4.3.1. Discontinuous Galerkin formulation of the multi-domain problem

Let us now assume that the domain X is decomposed into Ns subdomains X ¼
SNs

i¼1Xi. A superscript i indi-
cates that some notations are relative to the subdomain Xi and not to the whole domain X. Thus, we will refer
to T i

h and V i
h with obvious definitions from those of T h and Vh and we also define Ci

m ¼ Cm \ oXi,
Ci

a ¼ Ca \ oXi and Ci
0 ¼ C0 \ oXi with their corresponding sets of faces Cm,i, Ca,i and C0,i. Finally Cij will

denote the set of faces which belongs to Cij = oXi \ Xj.
According to algorithm (3.1), the interface condition on Cij writes as:
G�nF
ðW i;nþ1

h �W j;n
h Þ ¼ 0 for all F belonging to Cij;
where W i;nþ1
h denotes the approximation of Wi,n+1 for i = 1,2. Thus, the discontinuous Galerkin discreti-

zation of a local problem of algorithm (3.1) can be written using (4.2), as the solution of the following
problem:
Find W i;nþ1
h in V i

h � V i
h such that :R

Xi
h
ðixG0W i;nþ1

h ÞtV dvþ
P

K2T i
h

R
K

P
l2fx;y;zg

GlolðW i;nþ1
h Þ

 !t

V dv

þ
P

F2Cm;i

R
F

1
2
ðMF ;K � IFKGnF ÞW

i;nþ1
h

� �t
V ds

þ
P

F2ðCa;i[CijÞ

R
F IFKG�nF

W i;nþ1
h

� �t
V ds

�
P

F2C0;i

R
F GnF sW i;nþ1

h t
� �tfVgds

þ
P

F2C0;i

R
F SF sW i;nþ1

h t
� �t

sVtds

¼
P

F2Ca;i

R
F IFKG�nF

W inc
� �t

V ds

þ
P

F2Cij

R
F ðIFKG�nF

W j;nÞtV ds; 8V 2 V i
h � V i

h:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4:14Þ
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4.3.2. Formulation of an interface system

In the two-domain case the Schwarz algorithm can be written formally as follows:
LW1;nþ1 ¼ f 1; in X1;

B1ðW1;nþ1Þ ¼ K1;n; on C12;

þBoundary conditions on oX1 \ oX;

8><>:
LW2;nþ1 ¼ f 2 in X2;

B2ðW 2;nþ1Þ ¼ K2;n on C21;

þBoundary conditions on oX2 \ oX;

8><>: ð4:15Þ
and then:
K1;nþ1 ¼ B1ðW 2;nþ1Þ on C12;

K2;nþ1 ¼ B2ðW 1;nþ1Þ on C21;

(
ð4:16Þ
where L is a linear differential operator, f 1,2 denotes right hand sides associated to X1,2 and, B1 and B2 are the
interface operators. The Schwarz algorithm (4.15) and (4.16) can be rewritten as:
K1;nþ1 ¼ B1ðW 2ðK2;n; f 2ÞÞ;
K2;nþ1 ¼ B2ðW 1ðK1;n; f 1ÞÞ;

(

where W j = W j(K j, f j) are the solution of the local problems. By linearity of the operators involved, an
iteration of the Schwarz algorithm is equivalent to:
knþ1 ¼ ðId� T Þkn þ d;
which is a fixed point iteration to solve the interface system:
T k ¼ d; ð4:17Þ

where k = (k1,k2). From the discrete point of view, the global problem on domain X can be written in the
matrix form:
A1 0 R1 0

0 A2 0 R2

0 �B2 I 0

�B1 0 0 I

0BBB@
1CCCA

W1
h

W2
h

k1
h

k2
h

0BBB@
1CCCA ¼

f 1
h

f 2
h

0

0

0BBB@
1CCCA;
where A1,2 are local matrices coupling only internal unknowns, R1,2 express the coupling between internal
unknowns and interface unknowns and the subscript h denotes the discrete counterpart of a given quantity
(e.g. k

1;2
h are the discretized unknown vectors corresponding to k1,2). The elimination of the internal unknowns

W1;2
h leads to the discrete counterpart of the interface problem (4.17), T hkh ¼ dh, with:
T h ¼
I B2A�1

2 R2

B1A�1
1 R1 I

0B@
1CA and gh ¼

B2A�1
2 f 2

h

B1A�1
1 f 1

h

 !
;

where T h and gh are the discretization of T and d. This system is further solved by a Krylov subspace method
as discussed in the following section.
5. Numerical and performance results

5.1. Implemented formulations and experimental testbed

For this study, the implementation of the discontinuous Galerkin formulations described in section (4.1)
has been limited to a P0 approximation with the centered flux (4.3) (which is equivalent to a finite volume
method which will be referred as DG-P0-c in the sequel) and a P1 approximation (i.e. a linear discontinuous
Galerkin method) with either the centered flux (4.3) or the upwind flux (4.4) and nodal polynomial basis func-
tions (respectively referred as DG-P1-c and DG-P1-u in the sequel).
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For what concerns the implementation of the domain decomposition solver, the geometric partitioning of
the underlying tetrahedral mesh is a (non-overlapping) element-wise partitioning, the separator between
neighboring submeshes being a triangulated surface (i.e. a list of triangular faces). Then, for each face on a
given artificial interface Cij between neighboring submeshes Xi and Xj, the physical fields involved in the inter-
face conditions of (4.15) and (4.16) are those defined in the two tetrahedra attached to the face.

Unless otherwise indicated, computations have been performed in 64 bit arithmetic. The experimental test-
bed is a cluster of AMD Opteron 2 GHz dual nodes with 2 GB of RAM memory, interconnected by a Gigabit
Ethernet switch. The computer codes for the DG-P0 and DG-P1 methods have been programmed in Fortran
and the parallelization relies on the MPI (Message Passing Interface). The implementation of the domain
decomposition solver requires a partitioning of the underlying tetrahedral mesh which is obtained using the
MeTiS graph partitioning tool [31].

5.2. Solution strategies

An unpreconditioned BiCGstab(‘) Krylov subspace method [41] is used for the solution of the interface
system (4.17). After different tests for assessing the convergence of the method and the associated computation
time, the parameter ‘ has been set to 6. This method is adapted to linear systems involving non-symmetric
matrices with complex spectrum. The convergence of the iterative solution of the interface system is evaluated
in terms of the euclidian norm of the residual normalized to the norm of the right-hand side vector. The cor-
responding linear threshold has been set to ei = 10�6. Each iteration of this Krylov subspace method requires a
certain number of matrix–vector products with the interface matrix of system (4.17). Within the domain
decomposition framework of algorithm (3.1), such a matrix–vector product translates into the solution of
the subdomain discrete problems (4.14). For this purpose, several strategies have been considered:

� a preconditioned restarted GMRES(m) [40] (with m = 10) or a preconditioned BiCGstab(‘) (with ‘ = 1)
method where the preconditioner is taken to be a LU factorization computed and stored in single precision
arithmetic using the MUMPS multifrontal sparse direct solver [2], while the Krylov subspace method works
on double precision arithmetic vectors. In both cases, the linear threshold has been set to ei = 10�6. These
solution strategies will be referred respectively as DD-gmres and DD-bicgl.
� a LU factorization where the L and U factors are computed and stored in single precision (32 bits) arith-

metic and an iterative refinement procedure is applied to recover double precision arithmetic (64 bits). More
precisely, assuming that the linear system is Ax = b, the iterative refinement procedure is as follows:
x 0

REPEAT

r b� Ax %residual evaluation step:

Solve Ly ¼ r

Solve Uz ¼ y

x xþ z %updating step:

UNTILkrk < el
where the triangular solves Ly = r and Uz = y are performed using single precision arithmetic while the
residual evaluation and updating step are computed in double precision arithmetic. In practice, we set
el = 10�10 and a maximum of five iterations of the above procedure. In the sequel, this solution strategy
will be referred as DD-itref.

These strategies have been selected with the aim to reduce the memory requirements for storing the L and U

factors and thus allowing to tackle large problems. We note that such mixed-precision strategies have recently
been considered in the linear algebra community essentially for performance issues [32,33] on modern high-
performance processors. In these works, the mixing of single and double precision computations is performed
in the context of an iterative refinement procedure. Here, the single precision L and U factors yield a very
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accurate preconditioner and consequently, a few iterations of the preconditioned Krylov subspace methods
are sufficient for solving the subdomain problems. In practice we use one iteration of BiCGstab and two iter-
ations of GMRES.

In the following tables and figures:

� Lmin, Lmax and Lavg, respectively denote the minimum, maximum and average length of an edge in a given
tetrahedral mesh,
� Ns is the number of subdomains which is also the number of processes involved in a parallel simulation,
� ‘CPU’ is the CPU time which is evaluated on each process of a parallel simulation and, for this reason, we

give both the minimum and maximum values of this quantity,
� ‘REAL’ is the real (or elapsed) time of a parallel simulation,
� ‘RAM’ is the memory requirement for storing the L and U factors which is evaluated on each process of a

parallel simulation and, as for the ‘CPU’ quantity, we give both the minimum and maximum values of this
quantity.

5.3. Diffraction of a plane wave by a PEC sphere

The first test problem that we consider is the diffraction of a plane wave by a perfectly conducting sphere
with radius R = 1 m centered at the origin. The artificial boundary on which the first-order absorbing condi-
tion (2.2) applies is defined by a sphere with radius Ra = 1.5 m centered at the origin. The medium is consid-
ered homogeneous with er and lr equal to one. The frequency of the incident plane wave is F = 600 MHz and
x = 2pF/F0 with F0 = 300 MHz. Its polarization is such that:
Table
Diffrac

Mesh

M1
M2
M3
M4

Chara
k ¼ ð0; 0;�kzÞt; E ¼ ðEx; 0; 0Þt and H ¼ ð0;Hy ; 0Þt:

Four tetrahedral meshes of increased resolution have been used and their characteristics are summarized in
Table 1. Views of the triangulations in the plane Z = 0.0 m are given in Fig. 1. Note that the mesh with
the finest resolution is such that Lavg=K/11 while this ratio is equal to 6 for the mesh with the coarsest
resolution.

Numerical solutions are shown in Figs. 2 and 3 in the form of the contour lines in the plane Z = 0.0 m of
the Ex and Ey components. Fig. 2(a) and (b) correspond to the analytical solution for this problem, expressed
using Debye potentials [17]. Clearly, the solutions obtained on mesh M4 using the DG-P0-c method, and on
mesh M1 using the DG-P1-c/DG-P1-u methods are in very good agreement with the reference result. Timing
measures are given in Tables 2 (solution phase) and 3 (factorization phase).

5.4. Diffraction of a plane wave by a PEC cube

The test problem considered here consists in the diffraction of a plane wave by a perfectly conducting cube
of side length C = 1/3 m centered at the origin. The artificial boundary on which the first-order absorbing con-
dition (2.2) applies is defined by a unitary cube centered at the origin. The frequency of the incident plane wave
is F = 900 MHz and its polarization is such that:
k ¼ ðkx; 0; 0Þt; E ¼ ð0;Ey ; 0Þt and H ¼ ð0; 0;H zÞt:
1
tion of a plane wave by a PEC sphere, F = 600 MHz

# Vertices # Tetrahedra Lmin (m) Lmax (m) Lavg (m)

32,418 172,800 0.051990 0.152832 0.086657
70,422 384,000 0.039267 0.118029 0.066279

151,452 843,648 0.030206 0.091805 0.051038
244,834 1,382,400 0.025665 0.078819 0.043431

cteristics of the tetrahedral meshes (‘#’ refers to the number of).
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Fig. 1. Diffraction of a plane wave by a PEC sphere, F = 600 MHz. Triangulation in the plane Z = 0.0 m.
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Five tetrahedral meshes have been used whose characteristics are summarized in Table 4 (see also Fig. 4(a)).
The exterior domain is always the vacuum but two situations have been considered for the cube: either it is
strictly a perfect conductor or it is coated by a dielectric material with er = 4.0 (see also Fig. 4(b) for a view
of the corresponding zone).
5.4.1. Propagation in vacuum

Numerical solutions are shown in Figs. 5 and 6 in the form of the contour lines in the plane Z = 0.5 m of
the Ex and Ey components. One can note that the solution resulting from the DG-P1-c method applied on
mesh M1 is very similar to the one obtained using the DG-P0-c method with mesh M4. Moreover, the former
solution exhibits a better symmetry with regards to the distribution of the Ey component. Timing measures are
given in Tables 5 (solution phase) and 6 (factorization phase).
5.4.2. Coated PEC cube
Numerical solutions are shown in Fig. 7 in the form of the contour lines in the plane Z = 0.5 m of the Ex

and Ey components. This time, we only report on results obtained using the DG-P0-c method applied to mesh
M5 and the DG-P1-c/DG-P1-u methods applied to mesh M2. One can note that the solution resulting from
the DG-P0-c method does not exhibit all the peculiarities of the underlying wave propagation problem. This is
made particularly clear on the distributions of the Ex component which suggest that the DG-P0-c might
require a discretization mesh with an increased resolution. Timing measures are given in Tables 7 (solution
phase) and 8 (factorization phase).
5.5. Discussion of the numerical and parallel performances

A first noticeable behaviour that can be emphasized is that the convergence of the proposed domain
decomposition solver for a given approximation method is weakly dependent on the number of system
unknowns and the granularity of the decomposition (i.e. the number of subdomains). For instance, in
the case of the diffraction of a plane wave by a PEC sphere, when switching from mesh M2 to mesh
M4 (see Table 1), the number of unknowns of the algebraic system associated to the DG-P0-c approxima-
tion method increases from 6 · 384,000 = 2,304,000 to 6 · 1,382,400 = 8,294,400 while the number of iter-
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Fig. 2. Diffraction of a plane wave by a PEC sphere, F = 600 MHz. Contour lines of Ex and Ey in the plane Z = 0.0 m.
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ations of the domain decomposition solver ranges from 8 to 10 for a number of subdomains Ns in the
set {16,32,64}. Similarly, for the diffraction of a plane wave by a PEC cube, when switching from
mesh M2 to mesh M4 (see Table 1), the number of unknowns of the algebraic system associated to the
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Table 2
Diffraction of a plane wave by a PEC sphere, F = 600 MHz

Mesh Method Strategy Ns # it CPU (min/max) REAL

M1 DG-P1-c DD-bicgl 32 10 441 s/772 s 929 s
– – DD-gmres – 10 227 s/271 s 442 s
– – DD-itref – 9 197 s/300 s 480 s

M1 DG-P1-u DD-bicgl 32 10 544 s/616 s 842 s
– – DD-gmres – 9 259 s/284 s 464 s
– – DD-itref – 9 170 s/200 s 344 s

M2 DG-P0-c DD-bicgl 16 8 215 s/379 s 390 s
– – – 32 9 98 s/132 s 143 s
– – DD-gmres 16 8 110 s/139 s 143 s
– – – 32 9 46 s/58 s 68 s
– – DD-itref 16 8 215 s/379 s 390 s
– – – 32 9 101 s/159 s 172 s

M3 DG-P0-c DD-bicgl 32 8 244 s/352 s 456 s
– – – 64 9 116 s/178 s 184 s
– – DD-gmres 32 8 121 s/164 s 249 s
– – – 64 9 56 s/87 s 98 s
– – DD-itref 32 8 116 s/197 s 256 s
– – – 64 9 53 s/98 s 111 s

M4 DG-P0-c DD-bicgl 64 9 197 s/432 s 460 s
– – DD-gmres – 10 109 s/173 s 211 s
– – DD-itref – 9 101 s/193 s 233 s

Computation times (solution phase).

Table 3
Diffraction of a plane wave in vacuum by a PEC sphere, F = 600 MHz

Mesh Method Ns CPU (min/max) RAM (min/max)

M1 DG-P1-c 32 198 s/301 s 1217 MB/1457 MB
M1 DG-P1-u 32 211 s/329 s 1257 MB/1512 MB
M2 DG-P0-c 8 220 s/359 s 1365 MB/1679 MB
– – 16 56 s/121 s 492 MB/733 MB
– – 32 11 s/26 s 156 MB/249 MB

M3 – 32 69 s/185 s 586 MB/959 MB
– – 64 17 s/52 s 210 MB/370 MB

M4 – 64 43 s/135 s 425 MB/737 MB

Computation times and memory requirement for storing the L and U factors.

Table 4
Diffraction of a plane wave by a PEC cube, F = 900 MHz

Mesh # Vertices # Tetrahedra Lmin (m) Lmax (m) Lavg (m)

M1 9,136 46,704 0.05000 0.08660 0.06343
M2 29,062 156,000 0.03333 0.05773 0.04242
M3 67,590 373,632 0.02500 0.04330 0.03187
M4 129,276 725,424 0.02000 0.03464 0.02552
M5 220,122 1,248,000 0.01666 0.02886 0.02128

Characteristics of the tetrahedral meshes.
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DG-P0-c approximation method increases from 6 · 156,000 = 936,000 to 6 · 725,424 = 4,352,544 while the
number of iterations of the domain decomposition solver ranges from 6 to 9 for a number of subdomains
Ns in the set {16,32,64}.
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Moreover, for a given mesh, the number of iterations increases when switching between the DG-P0 and
DG-P1 approximation methods. This is mainly related to the fact that at the same time the number of system
unknowns increases noticeably. For instance, when simulating the diffraction of a plane wave by a PEC cube
using mesh M2 (see Table 4), the number of system unknowns is equal to 6 · 156,000 = 936,000 and
24 · 156,000 = 3,744,000, respectively for the DG-P0 and DG-P1 approximation methods. In the former case,
the number of iterations is equal to 6 for Ns = 16 while in the latter case, it is equal to 9 (respectively 10) for
Ns = 32 (respectively 64).

It is also worthwhile to note that:

� the convergence of the domain decomposition solver when combined to the DG-P1 approximation method
seems insensitive to the type of scheme (i.e. centered or upwind) used for the evaluation of the numerical
flux through internal faces.
� As expected, when the propagation media is more complex than a simple uniform (i.e. homogeneous) mate-

rial, the convergence of the domain decomposition solver requires more iterations. Indeed, comparing the
performances of the domain decomposition solver combined to the DG-P1 approximation method for the
simply PEC and coated PEC cubes and using mesh M2, the number of iterations increases from 9 to 14.
Note that for mesh M5 and the DG-P0-c approximation method, the number of system unknowns is equal
to 6 · 1,248,000 = 7,488,000 which is exactly twice the number obtained for the DG-P1 approximation
method using mesh M2. Despite this large increase of the number of system unknowns and the difference
in the number of subdomains (respectively Ns = 32 and Ns = 64), the solution of the underlying algebraic
systems requires essentially the same number of iterations.

We evaluate the parallel performances of the proposed domain decomposition solver using two metrics:
the ratio of the maximum of the per process CPU times to the REAL time which is referred as ‘%CPU’ in
the sequel and, the relative parallel speedup SNs2

Ns1
evaluated as the ratio of the elapsed time for Ns1 subdo-

mains to the elapsed time for Ns2 subdomains. We mainly discuss the performance results of Table 2 but
similar conclusions can be drawn based on the solution times given in Tables 5 and 7. First, we remark
that, in the case of the diffraction of a plane wave by a PEC sphere, %CPU ranges from 58% to 97%.
The lowest values of this metric are essentially obtained for the computations conducted with mesh M1
(see Table 1) which is due to the fact that the underlying mesh is too coarse and the communication cost
induced by the BiCGstab(‘) method, which is applied to the solution of the interface system (4.17), prevails.
Apart from this particular situation, one can note that super-linear parallel speedups are often obtained,
For instance, for the same test case and computations based on mesh M2 (respectively M3), the
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Fig. 5. Diffraction of a plane wave in vacuum by a PEC cube, F = 900 MHz. Contour lines of Ex and Ey in the plane Z = 0.5 m.
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S32
16 2 ½2:1; 2:7� (respectively S64

32 2 ½2:3; 2:5�). This behaviour essentially stems from the super-linear reduction
of the cost of the local solves when increasing the number or subdomains for a constant global problem
size.
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Fig. 6. Diffraction of a plane wave in vacuum by a PEC cube, F = 900 MHz. Contour lines of Ex and Ey in the plane Z = 0.5 m.
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Table 5
Diffraction of a plane wave in vacuum by a PEC cube, F = 900 MHz

Mesh Method Strategy Ns # it CPU (min/max) REAL

M1 DG-P1-c DD-bicgl 8 6 202 s/352 s 355 s
– – DD-gmres – 6 106 s/118 s 124 s
– – DD-itref – 6 102 s/130 s 136 s

M2 DG-P1-c DD-bicgl 32 9 253 s/440 s 506 s
– – – 64 10 105 s/202 s 236 s
– – DD-gmres 32 9 115 s/151 s 207 s
– – – 64 10 60 s/82 s 117 s
– – DD-itref 32 9 108 s/152 s 168 s
– – – 64 10 47 s/72 s 91 s

M2 DG-P1-u DD-bicgl 32 9 343 s/389 s 430 s
– – – 64 10 161 s/207 s 234 s
– – DD-gmres 32 9 170 s/204 s 258 s
– – – 64 11 90 s/116 s 137 s
– – DD-itref 32 9 114 s/131 s 174 s
– – – 64 10 51 s/69 s 94 s

M2 DG-P0-c DD-bicgl 16 6 48 s/61 s 64 s
– – DD-gmres – 6 26 s/32 s 35 s
– – DD-itref – 6 20 s/27 s 31 s

M3 DG-P0-c DD-bicgl 16 7 150 s/184 s 199 s
– – – 32 8 81 s/101 s 122 s

M4 DG-P0-c DD-bicgl 16 7 345 s/395 s 452 s
– – – 32 8 161 s/224 s 238 s
– – – 64 9 87 s/108 s 120 s

Computation times (solution phase).

Table 6
Diffraction of a plane wave in vacuum by a PEC cube, F = 900 MHz

Mesh Method Ns CPU (min/max) RAM (min/max)

M1 DG-P1-c 8 82 s/129 s 735 MB/905 MB
M2 DG-P1-c 32 71 s/105 s 614 MB/728 MB
– – 64 17 s/32 s 217 MB/295 MB

M2 DG-P1-u 32 88 s/143 s 710 MB/874 MB
– – 64 20 s/36 s 243 MB/329 MB

M2 DG-P0-c 16 5 s/8 s 82 MB/105 MB
M3 – 16 23 s/36 s 285 MB/359 MB
– – 32 7 s/10 s 104 MB/134 MB

M4 – 16 76 s/114 s 732 MB/884 MB
– – 32 21 s/37 s 265 MB/359 MB
– – 64 6 s/10 s 96 MB/129 MB

Computation times and memory requirement for storing the L and U factors.
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On the other hand, it is equally important to observe that although the MeTiS partitioning tool almost
always yields well-balanced partitions (in the present case, the load balance is evaluated in terms of the local
number of tetrahedra), there is a noticeable disparity in the required amount of RAM for storing the subdo-
main L and U factors, especially for large values of the number of subdomains Ns. As a matter of fact, the fill-
in of the L and U factors is influenced by several factors among which, the presence in the original matrix of
diagonal blocks related to physical boundaries (metallic wall, absorbing boundary) which in turn has effects on
the numerical pivoting strategy. But, above all, the partitioning of a mesh (in practice, the adjacency graph
associated to the mesh) using a tool such as MeTiS, is dictated by two main criteria, namely the minimization
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Table 8
Diffraction of a plane wave by a coated PEC cube, F = 900 MHz

Mesh Method Ns CPU (min/max) RAM (min/max)

M2 DG-P1-c 32 71 s/102 s 614 MB/728 MB
M2 DG-P1-u 32 87 s/143 s 710 MB/874 MB
M5 DG-P0-c 64 16 s/29 s 213 MB/299 MB

Computation times and memory requirement for storing the L and U factors.

Table 7
Diffraction of a plane wave by a coated PEC cube, F = 900 MHz

Mesh Method Strategy Ns # it CPU (min/max) REAL

M2 DG-P1-c DD-bicgl 32 14 375 s/643 s 678 s
– – DD-gmres – 14 198 s/236 s 256 s
– – DD-itref – 14 173 s/247 s 271 s

M2 DG-P1-u DD-bicgl 32 13 471 s/562 s 630 s
– – DD-gmres – 13 245 s/290 s 317 s
– – DD-itref – 13 156 s/184 s 215 s

M5 DG-P0-c DD-bicgl 64 14 247 s/310 s 339 s
– – DD-gmres – 14 130 s/164 s 185 s
– – DD-itref – 14 98 s/133 s 157 s

Computation times (solution phase).
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of the subdomains separator and the achievement of a well-balanced computational load, while a balance of
the fill-in is rarely an objective. In the present case, the main consequence of this load unbalance in the fill-in of
the local L and U factors is a potentially large gap between the minimum and maximum CPU times for the
subdomain triangular solves, which results in non-negligible idle times across processes between each iteration
of the interface system solver.
5.6. A bioelectromagnetics application

We conclude this section of results with the application of the proposed numerical methodology to the
simulation of a time-harmonic electromagnetic wave propagation problem in an irregularly shaped and het-
erogeneous medium. The problem under consideration is concerned with the propagation of a plane wave in
realistic geometrical models of head tissues. It is a first step towards the development of a computational
framework for the numerical dosimetry of electromagnetic fields radiated by mobile phones. Starting from
MR images of the Visible Human 2.0 project [39], head tissues are segmented and the interfaces of a
selected number of tissues (namely, the skin, the skull and the brain) are triangulated. Different strategies
can be used in order to obtain a smooth and accurate segmentation of head tissues and interface triangu-
lations as well. A first strategy consists in using a marching cube algorithm [35] which leads to huge trian-
gulations of interfaces between segmented subdomains. These triangulations can then be regularized, refined
and decimated in order to obtain reasonable surface meshes, for example using the YAMS [22] re-meshing
tool. Another strategy consists in using a variant of Chew’s algorithm [8], based on Delaunay triangulation
restricted to the interface, which allows to control the size and aspect ratio of interfacial triangles [5]. Sur-
face meshes of increased resolution resulting from such a procedure are presented in Fig. 8. Then, these tri-
angulated surfaces together with a triangulation of the artificial boundary (absorbing boundary) of the
overall computational domain, which is taken here to be a sphere, are used as inputs for the generation
of volume meshes. In this study, the GHS3D tetrahedral mesh generator [24] is used to mesh volume
domains between the various interfaces. Two tetrahedral meshes have been used whose characteristics are
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summarized in Table 9. The frequency of the incident plane wave is F = 1800 MHz and its polarization is
such that:
Table
Propag

Mesh

M1
M2

Chara
k ¼ ðkx; 0; 0Þt; E ¼ ð0; 0;EzÞt and H ¼ ð0;Hy ; 0Þt:

Albeit this propagation problem clearly involves irregularly shaped domains and non-uniform tetrahedral
meshes, it is yet a simplified configuration with regards to the simulations usually used in numerical dosimetry
studies of human exposition to mobile phone radiation [4], for two reasons: a mobile phone geometrical model
has not been taken into account in the present simulation setting and, the electromagnetic parameters of the
materials are set to artificial values for the purpose of exemplifying the characteristics of the propagation of
the plane wave in the head tissues (null conductivity, er = 4.0 for the brain, er = 6.5 for the cerebrospinal fluid,
er = 1.5 for the skull and er = 4.0 for the skin). For the computations reported here, the methods DG-P1-c and
DG-P1-u are used in conjunction with mesh M1 while method DG-P0-c is used with mesh M2. Moreover, this
problem has also been simulated using a DGTD-P1-c (Discontinuous Galerkin Time-Domain) method [21]
and the corresponding result will be considered here as the reference solution. The contour lines of Ez in var-
ious configurations are visualized in Figs. 10–13. As can be seen on these figures, on one hand, there is a good
agreement between the results of the time-domain and time-harmonic computations and, on the other hand,
the DG-P1 methods used with the coarsest mesh yield solutions which are closer to the reference computation
than the one resulting from the DG-P0-c method applied on the finest geometrical model.

Performance results are given in Tables 10 and 11. In addition, the convergence curves for the iterative solu-
tion of the interface system (4.17) using the BiCGstab(‘) method are shown in Fig. 9. Firstly, we note that the
iterative solution requires 3–4 times more iterations than the numbers observed for the previous test cases,
which is the consequence of the increased complexity in both the underlying discretization and the propaga-
tion medium. Secondly, the parallel efficiency, evaluated using the %CPU ratio, ranges from 65% to 75%. Here
again, the load unbalance in the fill-in of the local L and U factors is the main reason for this parallel perfor-
mance drop.
9
ation of a plane wave in a heterogeneous medium, F = 1800 MHz

# Vertices # Tetrahedra Lmin (m) Lmax (m) Lavg (mm)

60,590 361,848 0.00185 0.04537 0.01165
309,599 1,853,832 0.00158 0.02476 0.00693

cteristics of the tetrahedral meshes.
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Fig. 9. Propagation of a plane wave in a heterogeneous medium, F = 1800 MHz. Iterative solution of the interface system.
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Fig. 10. Propagation of a plane wave in a heterogeneous medium, F = 1800 MHz. Contour lines of Ez.
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Fig. 11. Propagation of a plane wave in a heterogeneous medium, F = 1800 MHz. Contour lines of Ez.
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Fig. 12. Propagation of a plane wave in a heterogeneous medium, F = 1800 MHz. Contour lines of Ez.
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Fig. 13. Propagation of a plane wave in a heterogeneous medium, F = 1800 MHz. Contour lines of Ez: method DG-P0-c with mesh M2.

Table 10
Propagation of a plane wave in an heterogeneous medium, F = 1800 MHz

Mesh Method Strategy Ns # it CPU (min/max) REAL

M1 DG-P1-c DD-itref 96 47 346 s/466 s 714 s
– DG-P1-u DD-itref 96 46 347 s/547 s 765 s

M2 DG-P0-c DD-itref 96 33 228 s/322 s 428 s

Computation times (solution phase).

Table 11
Propagation of a plane wave in a heterogeneous medium, F = 1800 MHz

Mesh Method Ns CPU (min/max) RAM (min/max) # dof

M1 DG-P1-c 96 64 s/125 s 640 MB/852 MB 8,684,352
– DG-P1-u 96 80 s/134 s 633 MB/866 MB 8,684,352

M2 DG-P0-c 96 53 s/98 s 519 MB/684 MB 11,122,992

Computation times and memory requirement for storing the L and U factors.

2070 V. Dolean et al. / Journal of Computational Physics 227 (2008) 2044–2072
5.7. Conclusion

We have presented a hybrid iterative/direct solution method for the large, sparse and complex coefficients
algebraic systems resulting from the discretization of the time-harmonic Maxwell equations by discontinuous
Galerkin methods. The discretization in space relies on an unstructured tetrahedral mesh and as a result, the
proposed numerical methodology is particularly well suited to the simulation of wave propagation problems
in irregularly shaped media. Moreover, the local nature of a discontinuous Galerkin formulation allows for a
natural treatment of heterogeneous media. Numerical and performance results reported here, albeit promis-
ing, have also raised a weakness in the current implementation of the domain decomposition method in the
fact that the fill-in of the local L and U factors is generally not well-balanced except for relatively simple prob-
lems (simply shaped domain, uniform mesh and homogeneous media). We believe that this drawback should
be recurrent to almost all similar implementations of domain decomposition algorithms (i.e. based on exact
factorization methods for the subdomain solves). This problem could be figure out by resorting to constrained
level of fill-in subdomain solvers or/and by improving the quality of the mesh partitions (with regards to the
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resulting fill-in unbalance). In addition to these directions, our future works will be towards the improvement
of the numerical efficiency of the Schwarz-type algorithm adopted in this study thanks to the design of discrete
optimized interface conditions [16] in the framework of our discontinuous Galerkin formulations on tetrahe-
dral meshes.
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